Research Terms
1. Khashayarsha Khazaie, Mohammad W. Khan, Mojgan Zadeh, Praveen Bere, Kirsten Dennis, Nichole Blatner, Fotini Gounari, Todd Klaenhammer, and Mansour Mohamadzadeh.
Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. (2012). Proc Natl Acad Sci U S A, 109(26):10462-7.PMID: 22689992
2. Mojgan Zadeh, Mohammad W. Khan, Yong-Jun Goh, Jennifer L. Owen, Todd Klaenhammer and Mansour Mohamadzadeh (2012). Induction of Intestinal Pro-Inflammatory Immune responses by lipoteichoic acid. Journal of Inflammation 2012,9:7. PMID:224239
3. Mohammad W. Khan, Mojgan Zadeh, Praveen Bere, Elias Gounaris, Grace L. Douglas, Todd Klaenhammer, and Mansour Mohamadzadeh (2012). Modulating intestinal immune responses by lipoteichoic acid deficient L. acidophilus. Immunotherapy. 4(2):151-61. PMID: 22339459
4. Erskine CL, Krco CJ, Hedin KE, Borson ND, Kalli KR, Behrens MD, Heman-Ackah SM, von Hofe E, Wettstein PJ, Mohamadzadeh M, Knutson KL. (2011). MHC class II epitope nesting modulates dendritic cell function and improves generation of antigen-specific CD4 helper T cells. J Immunol. Jul 1;187(1):316-24. Epub 2011 May 25. PMID:21613617
5. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O'Flaherty S, Barrett T, Klaenhammer TR. (2011). Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA, 2011 Mar 15;108 Suppl 1:4623-30. Epub 2011 Jan 31. PMID: 21282652
6. Saber R, Zadeh M, Pakanati KC, Klaenhammer T, and Mohamadzadeh M. (2011) Regulation of downstream signals by Lactobacillus acidophilus NCFM deficient in lipoteichoic acid. Immunotherapy 3 (3):337-347. PMID:21395377
7. M. Mohamadzadeh, J. L. Owen, Reprogramming intestinal immunity is the answer to induced pathogenic inflammation. Immunotherapy 3, 1415 (2011). PMID: 22091675
8. Mohamadzadeh M, et al. (2010). Targeted Expression of Anthrax Protective Antigen by Lactobacillus gasseri as an Anthrax Vaccine. Future Microbiol 5(8):1289-1296.
9. Tournier JN & Mohamadzadeh M (2010). Key Roles of Dendritic Cells in Lung Infection and Improving Anthrax Vaccines. Trends Mol Med 16(7):303-312.
10. Mohamadzadeh M (2010). Induction of Protective Immunity Against Microbial Challenge by Targeting Antigens Expressed by Probiotic Bacteria to Mucosal Dendritic Cells. Curr HIV Res 8(4):323-329.
11. Steele KE, Anderson AO, & Mohamadzadeh M (2009). Fibroblastic Reticular Cells and Their Role in Viral Hemorrhagic Fevers. Expert Rev Anti Infect Ther 7(4):423-435.
13. Tournier JN, Ulrich RG, Quesnel-Hellmann A, Mohamadzadeh M, & Stiles BG (2009). Anthrax, Toxins and Vaccines: A 125-Year Journey Targeting Bacillus anthracis. Expert Rev Anti Infect Ther 7(2):219-236.
14. Steele KE, Anderson AO, & Mohamadzadeh M (2009). Fibroblastic Reticular Cell Infection b y Hemorrhagic Fever Viruses. Immunotherapy 1(2):187-197.
15. Mohamadzadeh M, Duong T, Sandwick SJ, Hoover T, & Klaenhammer TR (2009). Dendritic Cell Targeting of Bacillus anthracis Protective Antigen Expressed by Lactobacillus acidophilus Protects Mice from Lethal Challenge. Proc Natl Acad Sci USA 106(11):4331-4336.
16. Mohamadzadeh M & Klaenhammer TR (2008). Specific Lactobacillus Species Differentially Activate Toll-like Receptors and Downstream Signals in Dendritic Cells. Expert Rev Vaccines 7(8):1155-1164.
17. Tournier JN & Mohamadzadeh M (2008). Microenvironmental Impact on Lung Cell Homeostasis and Immunity During Infection. Expert Rev Vaccines 7(4):457-466.
18. Mohamadzadeh M, Duong T, Hoover T, & Klaenhammer TR (2008). Targeting Mucosal Dendritic Cells with Microbial Antigens from Probiotic Lactic Acid Bacteria. Expert Rev Vaccines 7(2):163-174.
19. Mohamadzadeh M, Chen L, & Schmaljohn AL (2007). How Ebola and Marburg Viruses Battle the Immune System. Nat Rev Immunol 7(7):556-567.
20. Reed DS & Mohamadzadeh M (2007). Status and Challenges of Filovirus Vaccines. Vaccine 25(11):1923-1934.
21. Scorpio A, et al. (2007). Poly-gamma-glutamate Capsule-degrading Enzyme Treatment Enhances Phagocytosis and Killing of Encapsulated Bacillus anthracis. Antimicrob Agents Chemother 51(1):215-222.
22. Mohamadzadeh M, Chen L, Olinger GG, Pratt WD, & Schmaljohn AL (2006). Filoviruses and the Balance of Innate, Adaptive, and Inflammatory Responses. Viral Immunol 19(4):602-612.
23. Mohamadzadeh M, et al. (2006). Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses. J Virol 80(14):7235-7244.
24. Kalina WV & Mohamadzadeh M (2005). Lactobacilli as Natural Enhancer of Cellular Immune Response. (Discov Med 5(26):199-203.
25. Mohamadzadeh M, et al. (2005). Lactobacilli Activate Human Dendritic Cells that Skew T-cells Toward T helper 1 Polarization. Proc Natl Acad Sci USA 102(8):2880-2885.
26. Sestak K, et al. (2004). Defining T-cell-Mediated Immune Responses in Rotavirus-Infected Juvenile Rhesus Macaques. J Virol 78(19):10258-10264.
27. Bosio CM, et al. (2004). Ebola and Marburg Virus-Like Particles Activate Human Myeloid Dendritic Cells. Virology 326(2):280-287.
28. Mohamadzadeh M, Mohamadzadeh H, Brammer M, Sestak K, & Luftig RB (2004). Identification of Proteases Employed by Dendritic Cells in the Processing of Protein Purified Derivative (PPD). J Immune Based Ther Vaccines 2(1):8.
29. Curiel TJ, et al. (2004). Peptides Identified Through Phage Display Direct Immunogenic Antigen to Dendritic Cells. J Immunol 172(12):7425-7431.
30. Pulendran B, Banchereau J., M. Moahmadzadeh M. (2004). Dendritic Cells Generated in the Presence of GM-CSF Plus IL-15 Prime Potent CD8+ Tc1 Responses In vivo. Eur J Immunol 34(1):66-73.
31. Mohamadzadeh M & Luftig R (2004). Dendritic cells: In The Forefront of Immunopathogenesis and Vaccine Development - A review. J Immune Based Ther Vaccines 2(1):1.
32. Warfield KL, et al. (2003). Ebola Virus-like Particles Protect from Lethal Ebola Virus Infection. Proc Natl Acad Sci USA 100(26):15889-15894.
33. Bosio CM, et al. (2003). Ebola and Marburg Viruses Replicate in Monocyte-Derived Dendritic Cells Without Inducing the Production of Cytokines and Full Maturation. J Infect Dis 188(11):1630-1638.
34. Pulendran B, et al. (2001). Lipopolysaccharides from Distinct Pathogens Induce Different Classes of Immune Responses In vivo. J Immunol 167(9):5067-5076.
35. Mohamadzadeh M, et al. (2001). Interleukin 15 Skews Monocyte Differentiation Into Dendritic Cells with Features of Langerhans Cells. J Exp Med 194(7):1013-1020.
36. Mummert ME, Mohamadzadeh M, Mummert DI, Mizumoto N, & Takashima A (2000). Development of a Peptide Inhibitor of Hyaluronan-Mediated Leukocyte Trafficking. J Exp Med 192(6):769-779.
37. Estess P, Nandi A, Mohamadzadeh M, & Siegelman MH (1999). Interleukin 15 Induces Endothelial Hyaluronan Expression In vitro and Promotes Activated T-cell Extravasation Through a CD44-Dependent Pathway In vivo. J Exp Med 190(1):9-19.
38. Oppenheimer-Marks N, Brezinschek RI, Mohamadzadeh M, Vita R, & Lipsky PE (1998). Interleukin 15 Is Produced by Endothelial Cells and Increases the Transendothelial Migration of T-cells In vitro and in the SCID Mouse-Human Rheumatoid Arthritis Model In vivo. J Clin Invest 101(6):1261-1272.
39. Mohamadzadeh M, DeGrendele H, Arizpe H, Estess P, & Siegelman M (1998). Proinflammatory Stimuli Regulate Endothelial Hyaluronan Expression and CD44/HA-Dependent Primary Adhesion. J Clin Invest 101(1):97-108.
40. Mohamadzadeh M, Knop J, Aliani S, & Cruz PD, Jr. (1997). Cytokine Expression and Antigen-Presenting Capacity of 4F7+ Dendritic Cells Derived from Dermis, Spleen, and Lymph Nodes. Arch Dermatol Res 289(8):435-439.
41. Mohamadzadeh M, et al. (1996). Functional Roles for Granzymes in Murine Epidermal Gamma(Delta) T-cell-Mediated Killing of Tumor Targets. (Translated from Eng) J Invest Dermatol 107(5):738-742 (in Eng).
42. Bellinghausen I, et al. (1996). Epidermal Cells Enhance Interleukin 4 and Immunoglobulin E Production After Stimulation with Protein Allergen. J Invest Dermatol 107(4):582-588.
43. Mohamadzadeh M, Poltorak AN, Bergstressor PR, Beutler B, & Takashima A (1996). Dendritic Cells Produce Macrophage Inflammatory Protein-1 Gamma, a New Member of the CC Chemokine Family. J Immunol 156(9):3102-3106.
44. Mohamadzadeh M, McGuire MJ, Dougherty I, & Cruz PD, Jr. (1996). Interleukin-15 Expression by Human Endothelial Cells: Up-Regulation by Ultraviolet B and Psoralen Plus Ultraviolet A Treatment. Photodermatol Photoimmunol Photomed 12(1):17-21.
45. Mohamadzadeh M, Ariizumi K, Sugamura K, Bergstresser PR, & Takashima A (1996). Expression of the Common Cytokine Receptor Gamma Chain by Murine Dendritic Cells Including Epidermal Langerhans Cells. Eur J Immunol 26(1):156-160.
46. Edelbaum D, Mohamadzadeh M, Bergstresser PR, Sugamura K, & Takashima A (1995). Interleukin (IL)-15 Promotes The Growth of Murine Epidermal Gamma Delta T-cells by a Mechanism Involving the Beta- and Gamma C-Chains of the IL-2 Receptor. J Invest Dermatol 105(6):837-843.
47. Mohamadzadeh M, et al. (1995). Ultraviolet B Radiation Up-Regulates the Expression of IL-15 in Human Skin. J Immunol 155(9):4492-4496.
48. Erdmann G, et al. (1995). Heat-Stable Antigen is Expressed by Murine Keratinocytes and Delivers Costimulatory Signals in T-cell Activation. Exp Dermatol 4(5):291-296.
49. Saloga J, et al. (1995). Modulation of Contact Sensitivity Responses by Bacterial Superantigen. J Invest Dermatol 105(2):220-224.
50. Muller G, et al. (1995). Human Keratinocyte-Derived IL-12 Affects LC-Induced Allogeneic T-cell Responses. Adv Exp Med Biol 378:519-521.
51. Pavlidou A, Knop J, Mohamadzadeh M, Rude E, & Gradehandt G (1995). Processing and Presentation of Protein and Parasite-Derived Antigens by 4F7+ Dendritic Cells. Adv Exp Med Biol 378:233-235.
52. Mohamadzadeh M, Knop J, & Kolde G (1995). In vitro Analysis of the Phenotypical and Functional Properties of the 4F7+ Cutaneous Accessory Dendritic Cell. Arch Dermatol Res 287(3-4):273-278.
53. Aman MJ, et al. (1994). Regulation of Cytokine Expression by Interferon-Alpha in Human Bone Marrow Stromal Cells: Inhibition of Hematopoietic Growth Factors and Induction of Interleukin-1 Receptor Antagonist. Blood 84(12):4142-4150.
54. Mohamadzadeh M, et al. (1994). Freshly Isolated Mouse 4F7+ Splenic Dendritic Cells Process and Present Exogenous Antigens to T-cells. Eur J Immunol 24(12):3170-3174.
55. Mohamadzadeh M, et al. (1994). Enhanced Expression of IL-8 in Normal Human Keratinocytes and Human Keratinocyte Cell Line Hacat In vitro After Stimulation with Contact Sensitizers, Tolerogens and Irritants. Exp Dermatol 3(6):298-303.
56. Muller G, et al. (1994). Identification and Induction of Human Keratinocyte-Derived IL-12. J Clin Invest 94(5):1799-1805.
57. Enk AH, Saloga J, Becker D, Mohamadzadeh M, & Knop J (1994). Induction of Hapten-Specific Tolerance by Interleukin 10 In vivo. J Exp Med 179(4):1397-1402.
58. Walev I, et al. (1993). Staphylococcal Alpha-Toxin Kills Human Keratinocytes by Permeabilizing the Plasma Membrane for Monovalent Ions. Infect Immun 61(12):4972-4979.
59. Mohamadzadeh M, Lipkow T, Kolde G, & Knop J (1993). Expression of an Epitope as Detected by the Novel Monoclonal Antibody 4F7 on Dermal and Epidermal Dendritic Cells. I. Identification And Characterization Of The 4F7+ Dendritic Cell in situ. J Invest Dermatol 101(6):832-838.
60. Mohamadzadeh M, et al. (1993). Functional and Morphological Characterization of 4F7+ Spleen Accessory Dendritic Cells. Int Immunol 5(6):615-624.
61. Kolde G, Mohamadzadeh M, Lipkow T, & Knop J (1992). A Novel Monoclonal Antibody to a Distinct Subset of Cutaneous Dendritic Cells. J Invest Dermatol 99(5):56S-58S.
62. Becker D, Mohamadzadeh M, Reske K, & Knop J (1992). Increased Level of Intracellular MHC Class II Molecules in Murine Langerhans Cells Following In vivo and In vitro Administration of Contact Allergens. J Invest Dermatol 99(5):545-549.
63. Haas J, Lipkow T, Mohamadzadeh M, Kolde G, & Knop J (1992). Induction of Inflammatory Cytokines in Murine Keratinocytes Upon In vivo Stimulation with Contact Sensitizers and Tolerizing Analogues. Exp Dermatol 1(2):76-83.
64, Kitajima T, et al. (1995). T-cell-Dependent Secretion of IL-1 Beta by a Dendritic Cell Line (XS52) Derived from Murine Epidermis. J Immunol 155(8):3794-3800.
NIH study sections, NIH; 2003 - 2014
This genetically modified strain of bacteria dramatically increases the amount of vitamin B12 produced by the Propionibacterium. Commercial production of vitamin B12 supplements commonly uses Propionibacterium, and this genetically modified strain can increase vitamin B12 yields and reduce production costs. In humans, vitamin B12 is a critical micronutrient needed to produce red blood cells, maintain healthy nerve cells, and create DNA. More than 12 percent of people over 60 take a dedicated vitamin B12 supplement, and 29 to 39.4 percent of people of any age take a multi-vitamin that includes B12. Despite the common use of vitamin B12 supplements, commercial nutraceutical companies use only three groups of bacteria to produce the vitamin.
Researchers at the University of Florida have developed a genetically improved strain of Propionibacterium commonly used in commercial vitamin B12 production. This Propionibacterium strain produces higher yields of vitamin B12 than other strains currently in use and can reduce costs of commercial vitamin B12 production.
Improved Propionibacterium strain that produces higher yields of vitamin B12 than other strains and can reduce costs of commercial vitamin B12 production
This genetically modified strain of Propionibacterium, UF1, efficiently synthesizes vitamin B12 and produces higher yields of the vitamin than other bacterium strains. The UF1 bacterium strain contains a mutation that decreases the activity of the vitamin B12 riboswitch, causing it to overproduce vitamin B12, thus increasing vitamin B12 yields for more-efficient commercial production.