Hydrogen gas is currently utilized for a variety of industrial, commercial and scientific purposes. In the future, the world looks to utilizing this gas as a sustainable energy alternative to fossil fuels, but many challenges must be overcome in order to bring hydrogen power into the consumer market. One major challenge lies with the efficient storage and transport of hydrogen gas. An additional problem lies in the fact the hydrogen is colorless and odorless, making detection of this highly flammable chemical difficult.
Technical Details
The invention solves storage issues by providing a super-absorbent medium for hydrogen to cling to in the form of palladium coated carbon nanotubes (CNTs). Palladium acts as a hydrogen “super sponge” by absorbing over 900 times its own volume in surrounding hydrogen gas, while the CNTs act as a base for the palladium nanoparticles and are efficient hydrogen absorbents as well. The invention provides a novel inexpensive method for simultaneously forming, filling and decorating CNTs with palladium nanoparticles. Additionally, Palladium doped CNTs could be utilized to create highly keen hydrogen sensors which experience a shift in electrical potential when the hydrogen gas interacts with the nanotube elements.